
Protovis: A Graphical Toolkit for Visualization

Michael Bostock and Jeffrey Heer

Abstract—Despite myriad tools for visualizing data, there remains a gap between the notational efficiency of high-level visualization
systems and the expressiveness and accessibility of low-level graphical systems. Powerful visualization systems may be inflexible or
impose abstractions foreign to visual thinking, while graphical systems such as rendering APIs and vector-based drawing programs
are tedious for complex work. We argue that an easy-to-use graphical system tailored for visualization is needed. In response,
we contribute Protovis, an extensible toolkit for constructing visualizations by composing simple graphical primitives. In Protovis,
designers specify visualizations as a hierarchy of marks with visual properties defined as functions of data. This representation
achieves a level of expressiveness comparable to low-level graphics systems, while improving efficiency—the effort required to
specify a visualization—and accessibility—the effort required to learn and modify the representation. We substantiate this claim
through a diverse collection of examples and comparative analysis with popular visualization tools.

Index Terms—Information visualization, user interfaces, toolkits, 2D graphics.

1 INTRODUCTION

A popular approach to visualization is to import data into charting soft-
ware, specify a desired chart type, and then tweak visual parameters
as needed to produce the final graphic. Modern charting software may
support a dozen or more chart types, such as pie and line, while sup-
porting numerous customizable visual parameters, such as color and
font. As noted by Wilkinson [37], this approach is especially popular
in user interfaces, where often a chart can be produced in a few clicks.

Chart typologies are successful because they are quick and easy
to use, but suffer simultaneously because they are highly restrictive.
Many visualizations cannot be made simply because they are not one
of the supported types. In addition, despite customization, designers
may be unable to control the precise graphical output. A typological
grammar limits the space of possible visualizations, as compared to
what is possible in more general graphical systems.

As a result, designers may resort to vector-based drawing programs
to realize their intent [31]. This is unfortunate; while such programs
offer the utmost flexibility, they are not tailored for visualization.
Drawing vector graphics by hand is time-consuming and error-prone,
and even with the ability to import or generate simple graphics from
data, the process often cannot support interaction and live data.

High-level chart types and low-level vector drawing represent two
extremes, but in practice designers choose between many different sys-
tems, considering expressiveness (“Can I build it?”), efficiency (“How
long will it take?”) and accessibility (“Do I know how?”). The choice
of tool affects the resulting work, as it biases designers towards visu-
alizations that are easier to produce in the given tool. As Maslow [23]
famously quipped, “I suppose it is tempting, if the only tool you have
is a hammer, to treat everything as if it were a nail.”

The interfaces of these tools, as well as their underlying models,
vary substantially. Heer & Agrawala [15] noted the difficulty in identi-
fying common design patterns within existing visualization tools, and
consequently the high cost for users to learn and evaluate unfamiliar
systems. A tool that is both expressive and efficient, if difficult to
learn, may be inaccessible to users and of diminished practical value.

Despite the diversity of existing tools, surveyed in Section 2, we
argue that there is still a gap between low-level graphical systems and
high-level visualization systems. Many direct manipulation graphical

• The authors are with the Computer Science Department of Stanford
University, Stanford, CA 94305.
E-mail: {mbostock, jheer}@cs.stanford.edu.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

systems are easy to learn but tedious for complex work, while powerful
visualization systems can be intimidating to novices or inflexible.

Moreover, the abstractions used by visualization systems may be
foreign to designers. While vector graphics editors allow designers
to think concretely in terms of graphical marks, most expressive visu-
alization tools make use of abstract specifications of data processing
and visual encoding operators. Such systems require that designers
translate their intended visual design into toolkit abstractions, often
hindering accessibility.

In response, we contribute Protovis, an embedded domain-specific
language [19] for constructing visualizations by composing simple
graphical marks such as bars, lines and labels. In Protovis, design-
ers specify visualizations as a hierarchy of marks with visual prop-
erties defined as functions of data. Inheritance of properties across
composed marks—similar to cascading of style sheets used in web
design—enables concise visualization definitions with a large expres-
sive range and a minimum of intervening abstractions. Protovis is im-
plemented in JavaScript, with rendering support for HTML 5 canvas,
SVG, and Flash.

To evaluate Protovis, we built example applications demonstrating
the toolkit’s expressiveness and notational efficiency. We use these ex-
amples as points of comparison with Processing and Flare, two pop-
ular visualization tools. To assess accessibility, we present a com-
parative analysis using the Cognitive Dimensions of Notation frame-
work [13] and share feedback from designers using Protovis.

2 RELATED WORK

For the purpose of comparison we divide tools used to visualize data
into two categories: visualization systems based on high-level abstrac-
tions tailored to data visualization, and graphical systems using only
low-level graphical primitives. This dichotomy is not strict; indeed,
Protovis is intended to fall somewhere in-between.

2.1 Graphical Systems

Formal visualization systems are not required to construct visualiza-
tions; with enough effort any graphical tool can be used. Vector-based
drawing programs such as Adobe Illustrator are popular, especially for
print. One benefit of these systems is the close cognitive mapping be-
tween the representations employed by the tool and the desired result:
designers directly manipulate graphical marks to create and customize
their visualization. This improves accessibility and reduces the gulf
of execution [25]—the gap between designer’s goals and the actions
needed to attain them.

For total control, as well as to support interaction and live data, any
number of low-level rendering APIs are available, such as OpenGL,
Java2D, and Processing [26]. Processing was designed to be acces-
sible to new users and non-programmers, to “teach fundamentals of

computer programming within a visual context.” Although these li-
braries are general purpose, they typically support only imperative
methods for rendering graphical primitives such as ellipses and poly-
gons. Higher-level tools such as Flash and Piccolo [1] further provide
a scene graph abstraction to simplify tasks such as interaction and an-
imation. Still, without any visualization abstractions, the construction
of even simple charts is tedious.

2.2 Visualization Systems
Visualization systems are tools designed for the explicit purpose of
data visualization, employing abstractions and mathematical models
suited to this task. Such tools also commonly support data manage-
ment, layout algorithms, interaction, and animation.

2.2.1 Consumer Software
By far the most widely-used visualization tools are those integrated
into consumer software, often spreadsheet applications, such as Mi-
crosoft Excel and Google Spreadsheets. Although features vary, the
underlying representation in these applications is uniform: a chart ty-
pology. A user simply selects the cells of data to visualize and then
picks the desired chart type. The user may further customize the
chart configuration to make minor adjustments to the chart’s appear-
ance. Some research systems, including IBM’s Many-Eyes [33], fit
this model.

Despite the shortcomings noted by Wilkinson [37] and Tufte [31]
(not to mention questionable default chart configurations [11]), these
tools must be recognized for their success in user adoption: they are
easy to use, provided the user’s needs are immediately satisfied by the
built-in types. Creating a chart involves only a few quick actions; the
process is more selection than creation.

The main drawback of this approach is that it requires a small,
closed system. If the desired chart type is not supported, or the de-
sired visual parameter is not exposed in the interface, no recourse is
available to the user and either the visualization design must be com-
promised or another tool adopted. Given the high cost of switching
tools, and the iterative nature of visualization design [6], frequent com-
promise is likely.

2.2.2 Analytical and Exploratory Tools
A number of tools have originated in the visualization research com-
munity, establishing theoretical underpinnings and providing richer
options for visual data exploration. Tableau and its predecessor Po-
laris [29] integrate data manipulation with visualization, automatically
deriving database queries from the visual specification. Wilkinson’s
Grammar of Graphics [37] is an elegant language for specifying visu-
alizations as statistical graphs, “shunning chart typology” and offering
greater flexibility. These systems both benefit from metadata, for ex-
ample choosing appropriate default visual encodings for ordinal versus
quantitative fields [3, 22].

Despite the expressive power of these tools relative to chart typolo-
gies, control over graphical output is still limited, making them less
compelling for presentation and often unsuited for the design of novel,
customized visualizations. These are closed systems; it may not be
possible for the designer to customize all visual aspects if desired or
introduce new forms of visual encoding. In addition, the complexity
of the underlying model may be a barrier to entry for new users, due
to a steep learning curve. Although high-level abstractions allow con-
cise specifications,1 they may appear magical if the user does not fully
understand how the specification translates to the resulting visualiza-
tion. This lack of understanding worsens the gulf of execution, as the
necessary actions to correct the specification may be unclear.

2.2.3 Programming Toolkits
Programming toolkits are popular for presenting live data or allowing
user interaction. Many support only a limited number of chart types,

1In ggplot2, an implementation of Wilkinson’s Grammar in R, an example
grouped bar chart is specified as ggplot(diamonds, aes(x=clarity,
fill=cut)) + geom bar(position="dodge") [36].

such as the Google Chart API, JFreeChart and PlotKit. Such toolk-
its offer similar trade-offs to the simple facilities built into consumer
software, as discussed previously.

More expressive visualization toolkits include the InfoVis
Toolkit [10], Improvise [35], and the Prefuse and Flare toolkits [17,
12]. (See [15] for a more thorough list of existing toolkits.) Each
toolkit provides an integrated data management framework coupled
with visualization and interaction components. The InfoVis Toolkit
and Improvise provide a collection of visualization “widgets” that en-
capsulate visualizations into monolithic units. Such systems can be
extended by creating new components from scratch or subclassing ex-
isting components. As a result the model of these toolkits is quite
similar to the aforementioned chart typologies, and inherit many of
the corresponding limitations: customized visualizations may require
significant software engineering.

In contrast, visualizations in Prefuse and Flare are defined over a
collection of parameterized visual objects associated with data. Fol-
lowing the data state model of Chi et al. [7], designers determine the
properties of these visual objects (e.g., position, shape, color) by spec-
ifying a series of configurable operators that perform common actions
such as layout and color encoding. By composing a visualization from
fine-grained operators, Prefuse and Flare allow the construction of cus-
tom visualizations. Developers can further extend the system by defin-
ing new operators and visual primitives. To use these tools effectively
developers must become steeped in the workings of the toolkit, in-
cluding the library of provided operators and the stack of abstractions
(e.g., axes, scales, visual objects, and renderers). While these tools
can simplify many hard visualization tasks, they may also make easy
tasks unnecessarily complex.

The web offers many possibilities for system architectures, rang-
ing from thin clients running natively in the browser [9, 20] to “fat
servers” where most computation occurs on the server, and hybrid ap-
proaches in-between [2, 38]. Our approach is partly agnostic to system
architecture: while our initial implementation uses a thin client ap-
proach, the declarative specification is portable to other rendering en-
gines (e.g., Java 2D, Flash), and data transformations and parts of the
display could potentially be performed on the server. Our initial focus
is only to improve the language designers use to specify visualizations;
however, future research could determine whether this declarative ap-
proach allows optimization of the visualization pipeline, for example
through lazy evaluation of visual properties [24] with large datasets.

3 DESIGN

In designing Protovis, our goal was not to replace existing systems, but
rather to support a missing point in the design space of visualization
tools. Both charting software and analytical tools such as Tableau are
successful in practice, but their expressiveness is limited. We wanted
to provide tools that enable more low-level control of the design. Un-
like existing toolkits primarily suited to software engineers, we created
Protovis to make interactive visualization more accessible to web and
interaction designers. Thus we attempted to minimize the number of
intervening abstractions, allowing designers to focus on the compo-
sition of data-representative graphic elements using a notation that is
concise and easy to learn.

Protovis uses a simple grammar of graphical primitives to compose
visualizations. These primitives are called marks, and include famil-
iar elements such as bars, lines and labels. Although a bar mark may
be used to construct a bar chart, marks know nothing about charts; it
is only through their specification and composition that charts are pro-
duced. These building blocks permit many combinatorial possibilities.

Marks are associated with data: a mark is generated once per asso-
ciated datum, mapping the datum to visual properties such as position
and color. Thus, a single mark specification represents a set of visual
elements that share the same data and visual encoding. The type of
mark defines the names of properties and their meaning. A property
may be static, ignoring the associated datum and returning a constant;
or, it may be dynamic, derived from the associated datum or index.
Such dynamic encodings can be specified succinctly using anonymous
functions, as shown in Figures 2 & 4. Special properties called event

Fig. 1. Decomposing a visualization into marks.

new pv.Panel().canvas("fig3b")
 .data([[1, 1.2, 1.7, 1.5, .7],
 [.5, 1, .8, 1.1, 1.3],
 [.2, .5, .8, .9, 1]])
 .add(pv.Area)
 .data(function(d) d)
 .fillStyle(pv.Colors.category19.parent)
 .bottom(function() let (c = this.cousin())
 c ? (c.bottom + c.height) : 0)
 .height(function(d) d * 40)
 .left(function() this.index * 35)
 .root.render();

b

new pv.Panel().canvas("fig3a")
 .add(pv.Bar)
 .data([1, 1.2, 1.7, 1.5, .7, .2])
 .bottom(0).width(20)
 .height(function(d) d * 80)
 .left(function() this.index * 25)
 .root.render();

a

Fig. 2. Specifying two simple charts. (a) Bar. (b) Stacked area.

handlers can be registered to add interactivity.
Protovis uses inheritance to simplify the specification of related

marks: a new mark can be derived from an existing mark, inheriting
its properties. The new mark can then override properties to specify
new behavior, potentially in terms of the old behavior. In this way, the
old mark serves as the prototype for the new mark. Prototypal inheri-
tance is familiar to web developers, as it is a feature of the JavaScript
language and Cascading Style Sheets. It is also similar to Prefuse’s
Cascaded Table design pattern [15]. Most mark types share the same
basic properties for consistency and to facilitate inheritance.

Marks may have associated anchors, which are named positions
inside or nearby. Anchors can be used to position related marks, such
as labels for grid lines. Likewise, panels can be used to offset positions
and to replicate marks in small multiple displays [30]. An example of
these features working together is shown in Figure 4. The specification
of marks, properties and panels is detailed in Subsections 3.1-3.3.

Data can be imported using JavaScript Object Notation [21], which
allows integration with many existing web services. Data can be
atomic (e.g., numbers) or hierarchical (e.g., nested arrays, objects).
Data transformations are performed using JavaScript language fea-
tures and additional methods provided by Protovis, described in Sub-
section 3.4. Alternatively, transformations can be pushed to the server.

Finally, Protovis includes additional features to simplify the speci-
fication of marks, such as date formatting, scale transformations, gra-
dients and color palettes. These features are not discussed, but docu-
mentation is online at protovis.org.

3.1 Marks
The first task when using Protovis is to decompose the desired visu-
alization into its constituent marks, as in Figure 1. A bar chart might
consist of one or more bars, a rule, and a label; a pie chart might in-
clude only a wedge. In this way, we divide the problem of constructing
a complex visualization into a series of smaller, easier problems.

Once the initial set of marks is decided—it is always possible to add
or remove marks later—the remaining task is to define the properties

of each mark. Of course, this is the crux of visualization, so it is critical
that the built-in mark types and properties are intuitive and useful.

3.1.1 Properties
Properties control how marks are rendered by mapping a given datum
to a named rendering parameter. For example, the bar in Figure 2 is
defined in terms of its left margin, bottom margin, width and height.

As marks are generated, Protovis internally builds a scene graph
recording the computed property values for each. The scene graph
serves two purposes. First, it facilitates the definition of related marks
through property chaining, where one mark’s properties are defined
in terms of another’s. The property value is retrieved from the scene
graph rather than recomputed. It is also needed if property functions
depend on transient state, such as the current time or random variables.
Second, the scene graph supports interaction and animation.

Property functions can access the scene graph through the this
object, as well as globals or bound variables outside the function. Pro-
tovis uses a family tree convention for scene graph navigation: prop-
erty functions can refer to the parent panel that encloses the current
mark, the previous sibling, or the cousin in the previous instanti-
ation of the parent panel, as in Figure 2. A zero-based index attribute
can be used to compute a regularly-spaced left position, sufficing as a
trivial scale transformation.

Interactivity can be added by registering event handlers on marks.
Handlers respond to mouse or keyboard input events and mutate the
scene graph or underlying data to update the display. For example, a
handler might recolor a mark red in response to a mouse click event:
event("click",function()this.fillStyle("red")).

All marks share two fundamental properties, data and visible.
The data property is typically a static array, though in the case of
nested panels, a function can be used to dereference hierarchical data,
as in small multiple displays. Visibility determines whether or not a
mark is rendered; if false, the other properties are not evaluated.

3.1.2 Box Model
Many graphical systems use a Cartesian coordinate system where the
location of graphical elements is specified with a two-dimensional vec-
tor 〈x,y〉. Protovis takes a slightly different approach, adapting the
CSS box model [8]. This is consistent with the layout of visual el-
ements in web pages, and allows the specification of right-facing or
top-facing charts (akin to bidirectional text), simply by changing left
to right or bottom to top.

Points are specified with two orthogonal properties; using left and
top is equivalent to placing the origin in the top-left corner of the view-
port. If redundant properties are specified, left takes priority over right
and top takes priority over bottom. Boxes (axis-aligned rectangles) can
be specified using four orthogonal properties, such as left, top, width
and height, as shown in Figure 3.

bottom

height width
left right

top

Fig. 3. Specifying position and dimension using the box model.

3.2 Panels
Panels allow repeated or nested structures, commonly used in small
multiple displays [30] where a small visualization is tiled to facilitate
comparison across one or more dimensions. Other types of visualiza-
tions may benefit from repeated and possibly overlapping structure as
well, such as the stacked area chart in Figure 2. Panels can also offset
the position of marks to provide padding from surrounding content.

All Protovis displays have at least one panel; this is the root panel
to which marks are rendered. The box model properties (four margins,
width and height) are used to offset the positions of contained marks.
The data property determines the panel count: a panel is generated

http://protovis.org

var panel = new pv.Panel()
 .width(160).height(160)
 .bottom(10).left(10).right(30);

panel.add(pv.Area)
 .data([1, 1.2, 1.7, 1.5, .7, .5, .2])
 .bottom(0)
 .height(function(d) d * 80)
 .left(function() this.index * 25)
 .fillStyle("lightblue")
 .anchor("top").add(pv.Line)
 .strokeStyle("black")
 .add(pv.Dot);

panel.add(pv.Rule)
 .bottom(0)
 .add(pv.Rule)
 .data(pv.range(.5, 2, .5))
 .bottom(function(d) d * 80)
 .strokeStyle("white")
 .anchor("right").add(pv.Label);

panel.render();

a

b
c

d

e

f

a b c

ed f

Fig. 4. Dissection of an area chart specification in Protovis. The first three lines set the dimensions and margins of the root panel. (a) Next, an area
mark visually encodes the array of numbers with height. (b) A black line is added to the area’s top anchor for emphasis. (c) A dot is derived from
the line to indicate samples; note that it inherits the fill color from the area. (d) A horizontal rule, added to the panel, serves as the x-axis. (e) A
second rule implements white grid lines. (f) Finally, a label is added to the rule’s right anchor to show reference values.

once per associated datum. When nested panels are used, property
functions can declare additional arguments to access the data associ-
ated with enclosing panels.

Panels can be rendered inline, facilitating the creation of
sparklines [32] such as , , or . This
allows designers to reuse browser layout features, such as text flow
and tables; designers can also overlay HTML elements such as rich
text and images.

3.3 Built-in Mark Types

We now describe the initial set of graphical primitives provided by
Protovis. Protovis is extensible, and we expect to introduce new mark
types in the future. At the same time, it is desirable to keep the set
of supported marks small, so as to avoid overwhelming users with a
cornucopia of similar options.

3.3.1 Shapes

The Line mark type represents a series of connected line segments,
or polyline, that can be stroked with a configurable color and thick-
ness. By default, a distinct stroke color is allocated from a stock color
palette. Each articulation point in the line corresponds to a datum; for
n points, n - 1 connected line segments are drawn. The point is posi-
tioned using the box model. Arbitrary paths are also possible, allowing
radar plots and other custom visualizations.

Just as a line represents a polyline, the Area mark type represents
a polygon. However, an area is not an arbitrary polygon; vertices are
paired either horizontally or vertically into parallel spans, and each
span corresponds to an associated datum. Either the width or the
height must be specified, but not both; this determines whether the
area is horizontally-oriented or vertically-oriented. Like lines, areas
can be stroked and filled with arbitrary colors.

The Bar mark type is an axis-aligned rectangle that can be stroked
and filled. Bars are used for many chart types, including bar charts,
histograms and Gantt charts. Bars can also be used as decorations, for
example to draw a frame border around a panel.

A Dot is simply a sized glyph (e.g., , , , ,) centered at a
given point that can also be stroked and filled. The size property is
proportional to the area of the rendered glyph to encourage meaningful
visual encodings. Dots can visually encode up to eight dimensions of
data, though this may be unwise due to integrality [34].

f g h

dcba

e

Fig. 5. Examples of built-in mark types. (a-h) Area; Bar; Dot; Image;
Line; Label and Bar; Rule and Bar; Wedge.

No visualization system would be complete without the ability to
render the ubiquitous pie chart, so a Wedge mark type is provided.
Specified in terms of start and end angle, inner and outer radius,
wedges can be used to construct donut charts and polar bar charts as
well. If the angle property is used, the end angle is implied by adding
this value to start angle. By default, the start angle is the previously-
generated wedge’s end angle. This design allows explicit control over
the wedge placement if desired, while offering convenient defaults for
the construction of radial graphs.

The Rule mark type is provided to render horizontal and vertical
rules that are frequently needed for axes and grid lines. For example,
specifying only the bottom margin draws horizontal rules, while spec-
ifying only the left draws vertical rules. Rules can also be used as thin
bars. The visual style is controlled in the same manner as lines.

The Link mark type enables construction of node-link diagrams by
specifying connections between mark instances. The nodes prop-
erty determines a mark collection to use as nodes. Nodes are then
indexed according to values returned by the nodeKey property. By
default, a link’s prototype mark provides the nodes (i.e., links “inherit”
their nodes) and each node’s zero-based mark index serves as its key.
For each datum, the sourceKey and targetKey properties spec-
ify the link end points in terms of node keys. The specification can
accomodate multiple graph and tree data structures, including separate
node and edge tables, single tables with parent keys, pointer-based tree

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 6. Example applications. (a) Jacques Bertin’s analysis of hotel patterns. (b) Florence Nightingale’s chart of deaths in the Crimean War. (c) A
trellis display of barley yields. (d) William Playfair’s chart comparing the price of wheat and wages. (e) The Job Voyager. (f) Charles Minard’s flow
map of Napoleon’s march to Moscow, as a Google Maps “mash-up”. (g) Live Twitter updates containing the word “oakland”.

structures, and adjacency lists. Currently links are drawn as straight
lines styled identically to line marks, with optional arrows specified
by the sourceEnd and targetEnd properties. The optional an-
chor properties sourceAnchor and targetAnchor afford more
precise positioning of end points with respect to nodes.

3.3.2 Text and Images

The Label mark type allows textual annotation, such as labeling points
in a scatterplot, axis ticks and legends. A number of text placement
properties are available in addition to box model positioning: rotation
angle, horizontal and vertical alignment. The text itself is set with the
text property, whose default value is the identity function.

Finally, the Image mark type supports static images and the gener-
ation of dynamic images such as heat maps. For the latter, the color of
each pixel is specified using a function. Figure 5(d) shows an example
image that visually encodes elevation using a color gradient.

3.4 Data Transformation

Data is rarely in the exact format needed to produce the desired visu-
alization. Much of the work involved in producing a visualization is
finding data, munging it into a consistent format, deriving additional
fields, and refolding it to match the structure of the visualization spec-
ification. Furthermore, knowledge gained from preliminary visualiza-
tions can motivate new visualizations, possibly requiring changes to
the data format or new data from different sources [6]; making this
process easy encourages users to make the right visualization, rather
than compromising the design to suit the arbitrary format of the data.

A frequently-needed data transformation is to group relational data
into a tree; this is accomplished using the nest operator [29, 37]. Given
a key function, which returns the key value for a given datum, the nest
operator groups data with the same key value. Multiple key functions
can be specified to produce nested groups.

The nest operator also provides sorting and rollup functionality. El-
ements in the tree can be sorted by keys or values, using either default
lexicographic ordering or a custom comparator function. The rollup
method returns a map with entries for each key, whose values are the
results of applying a function to each group of elements. For example,
rollup can be used to compute the median value for each group, which
can then be used to sort groups (as in Figure 6(c)).

Protovis includes a number of summary statistics, such as count,
sum, max, min, mean, median, and quantile. We also provide several
methods for arrays, such as number range generation, scaling, permu-
tation, and cross and blend operators [37].

4 EVALUATION

As we developed Protovis, we sought to meet our design goals of cre-
ating an expressive, efficient, and accessible visualization tool. Here
we present findings from early-stage evaluations. To evaluate expres-
siveness and efficiency, we built a variety of example applications.
To evaluate accessibility, we analyzed Protovis using the Cognitive
Dimensions of Notation framework [13] and solicited feedback from
designers. Where applicable, we compare Protovis with Processing
and Flare, popular tools that serve as exemplars of low-level graphics
programming and high-level visualization systems, respectively.

Table 1. Load time and memory usage on example charts (n=10).

Chart Time (ms) Memory (MB)
µ σ µ σ

blank page 19 1 3.94 0.03
crimea-rose 38 4 0.25 0.04
barley-trellis 52 3 0.37 0.04
wheat-playfair 55 8 0.26 0.04
hotels-bertin 61 5 0.62 0.04
job-voyager 499 10 0.73 0.05
line-10 32 3 0.14 0.08
line-100 34 1 0.20 0.05
line-1,000 55 2 0.19 0.04
line-10,000 271 10 0.40 0.05
line-100,000 2,630 22 2.01 0.04
dot-10 32 2 0.12 0.04
dot-100 36 2 0.18 0.06
dot-1,000 94 2 1.08 0.05
dot-10,000 692 8 10.1 0.06
dot-100,000 7,370 66 102 1.83

4.1 Applications and Performance
Using Protovis, we were able to quickly and concisely specify a di-
verse set of visualizations. A subset of these examples is shown in Fig-
ure 6, including classic visualizations originally drawn by hand juxta-
posed with more modern examples, such as a “mash-up” with online
mapping tools and interactive stacked graphs. We indeed found that
Protovis facilitated design and implementation: Bertin’s permutation
matrix of hotel visits required only 38 lines of JavaScript, Nightin-
gale’s coxcomb 55, and Becker et al.’s trellis display (complete with
main-effects ordering) only 45.

To evaluate system performance, we used profiling tools to measure
the load time and memory usage of several example charts. The results
are shown in Table 1. The data was collected using SVG in Safari 4 on
Mac OS X 10.5.7, with a 2.8 GHz Intel Core 2 Duo processor and 4 GB
of RAM. The numbers for each chart are shown relative to the baseline
time and memory for a blank page. Also included are standard line and
scatterplots for datasets ranging from 10 to 100,000 points. Although
the thin-client SVG renderer is usable with up to 10,000 data points,
larger datasets likely require a different system architecture—though
not necessarily a different specification language.

We now present a pair of in-depth comparisons: a simple pie chart
specification and the Job Voyager, an interactive stream graph [5].

4.1.1 Pie Charts
The specifications for a simple pie chart () in Protovis, Processing
and Flare are shown in Figure 7. Although the pie chart is a trivial
instantiation of a standard chart type (neither custom nor interactive),
differences between the three systems are apparent.

Processing uses an imperative specification where most instructions
either render a shape immediately or have a side-effect on the drawing
environment. For instance, noStroke disables stroking of paths, so
that calls to arc are only filled. Like Protovis, Processing uses simple
graphical primitives; each pie wedge is specified literally in terms of
radii and angles. However, the exact mapping of data to visual prop-
erties is arguably less clear. While the impact on this simple example
is minor, problems of accessibility accrue as complexity increases.

The Flare specification employs two visualization abstractions that
simplify chart construction. The first is PieLayout, which translates
the univariate data into the dimensions of each pie slice. The second is
ColorEncoder, which translates the same data into a suitable quan-
titative color encoding with a light-to-dark blue gradient. The higher-
level abstractions of Flare arguably result in less effort, thanks to the
automatic layout and color encoding. However, the user must under-
stand these abstractions in order to use them (“How do I reference the
data values? What are ‘nodes’?”), and they may not be suitable for
custom visualizations.

cvis = new Visualization(
 Data.fromArray([{value: 1}, ...]));
vis.bounds = new Rectangle(0, 0, 150, 150);
vis.operators.add(new PieLayout(
 "data.value", 0.9));
vis.operators.add(new ColorEncoder(
 "data.value", "nodes", "fillColor"));
vis.update();
addChild(vis);

new pv.Panel().width(150).height(150)
 .add(pv.Wedge)
 .left(75).bottom(75)
 .outerRadius(70)
 .angle(function(d) d * 2 * Math.PI)
 .data(pv.normalize([1, 1.2, 1.7, 1.5, .7]))
 .root.render();

a

size(150, 150);
background(255);
smooth();
noStroke();
int diameter = 140;
float[] data = {1, 1.2, 1.7, 1.5, .7};
float lastAng = 0, sum = 0;
for (int i = 0; i < data.length; i++) {
 sum += data[i];
}
for (int i = 0; i < data.length; i++) {
 fill(data[i] * 120);
 float ang = data[i] / sum * 2 * PI;
 arc(width / 2, height / 2, diameter,
 diameter, lastAng, lastAng + ang);
 lastAng += ang;
}

b

Fig. 7. Specifying a simple pie chart. (a-c) Protovis; Processing; Flare.

4.1.2 Job Voyager
The Job Voyager by Heer et al. [18] shows U.S. census data for oc-
cupation and gender over 150 years. The dataset has over 6,000 data
points. The display is interactive, allowing the user to filter the visible
occupations according to a search query. Figure 6(e) shows jobs with
the suffix “-ist”. The data is visualized as a stacked area chart using
a ThemeRiver layout [5, 14]. A single area mark is enclosed by a
panel that is repeated for each job-sex pair. This is a refinement of the
technique shown in Figure 2; the area’s cousin determines the bottom
position. The nest operator groups the relational data by both sex and
occupation, and then sorts alphabetically by occupation.

The Protovis version is notably more concise than the Flare origi-
nal: with comments and import statements removed, the Flare version
remains over twice as long. However, the Flare version uses pre-built
operators for performing area and label layout, whereas the Protovis
version directly specifies the stacking and labeling rules; a more bal-
anced comparison including the size of Flare operators increases the
code size ratio from 2:1 to 5:1. Of course, to developers familiar with
Flare, these toolkit abstractions may make the specification easier to
implement due to encapsulation. Furthermore, they facilitate niceties
such as animated transitions between states. We plan to add similar
support to future versions of Protovis, though such abstractions would
be optional, and not required learning for all users.

4.2 Cognitive Dimensions of Notation
Though counting lines of code provides some insight into the effort re-
quired to specify a visualization, it alone is hardly a satisfactory mea-
sure. As an initial assessment of Protovis’ accessibility, we performed
an analysis using the Cognitive Dimensions of Notation (CDN) frame-
work [13], an inspection method for evaluating the effectiveness of no-
tational systems such as programming languages and visual interfaces.

CDN provides a collection of cognitive dimensions: useful heuristics
for evaluating a notation system and the environment in which it is ma-
nipulated. Due to space limitations, we briefly discuss only a relevant
subset of the 14 cognitive dimensions; we draw comparisons to other
tools where appropriate.

Closeness of mapping (closeness of representation to domain) · In
Protovis, the notation and problem domain are closely linked: visual-
izations are defined directly in terms of graphical marks, though one
has to map from textual specification to visual output. Furthermore,
Protovis uses existing web conventions such as the CSS box model to
leverage existing knowledge. In contrast, rendering APIs such as Pro-
cessing provide imperative rendering commands that also correspond
to graphic marks, but lack both direct specification of marks in terms
of properties and a scene graph that allows object-level manipulation
of marks. Flare instead requires conceptualizing the visualization in
terms of encoding operators, which in turn have a number of effects
(and side-effects) upon visual properties.

Hidden dependencies (important links between entities are not vis-
ible) · Protovis provides a few “behind-the-scenes” facilities such as
parent, sibling, and cousin scene graph accessors, and inher-
itance may at times result in unintended property settings. Flare uses
a host of abstractions including operators, axes, scale bindings, ren-
derers, and animators, few of which are visible in the visualization
specification. As a result, designers often report that it is frustrating
to determine the provenance of visual properties (“Is the axis layout
overwriting my manual scale range settings?”).

Role-expressiveness (the purpose of a component is readily in-
ferred) and Visibility (ability to view components easily) · Protovis
specifications directly denote the mark types and their visual prop-
erties, enabling identification of each visual mapping. However, as
discussed above, inheritance hampers this visibility. In Flare, the op-
erators are typically identified by their name and constructor param-
eters; in many cases documentation or code-inspection is required to
understand the effects of running the operator.

Consistency (similar semantics are expressed in similar syntactic
forms) · Protovis reuses the semantics of mark properties as much as
possible to facilitate consistency and improve learning. Some incon-
sistencies do occur: for example Marks do not inherit Panel properties.
In Flare, most operators are idiosyncratic but are instantiated and com-
posed in a consistent fashion. However, the relation between visual
properties and the actual appearance is indirect: Flare uses pluggable
renderers that can use or ignore visual object properties.

Viscosity (resistance to change) · Protovis allows rapid iteration by
changing property settings, and the visibility and consistency of prop-
erties facilitates rapid switching between mark types (except when
switching between Cartesian and radial marks). Flare allows quick
changes to operator settings and composition, but there are little con-
sistency guarantees of properties across operators. Processing requires
direct modification of imperative code, and so viscosity is largely de-
termined by the developer’s own engineering skill.

Hard mental operations (high demand on cognitive resources) ·
By directly surfacing visual property values, Protovis may incur more
mental effort regarding the mathematics of visual encoding, e.g., mul-
tiplying index and data values rather than simply invoking an axis en-
coding as in Flare. Protovis provides scale transforms to aid this pro-
cess, at the cost of learning an additional, through relatively straight-
forward, abstraction. In Flare, the most common taxing operations
are search tasks due to lack of visibility or hidden dependencies: how
to configure an operator, override a buried default value, or access an
intermediate abstraction.

Diffuseness (verbosity of language) · Section 4.1 discusses tool ver-
bosity. We have found Protovis to be concise in practice, though this
may be complicated by the incorporation of additional libraries or in-
teraction with the browser. Flare descriptions are also concise so long
as an operator for the desired task is already defined.

Abstraction (types and availability of abstraction mechanism) · Pro-
tovis does not yet provide toolkit mechanisms for abstraction, such as
template definitions. However, akin to Processing, programming lan-
guage abstractions such as functions and classes can be used. Flare

enables abstraction via operator and interactor classes, though these
require significant toolkit knowledge to author.

In summary, we have found that Protovis rates favorably in terms
of closeness of mapping, hidden dependencies, visibility, consistency,
viscosity, and diffuseness—lending credence to our claim of toolkit
accessibility. The analysis also points to some areas for potential in-
novation, e.g., promoting visibility across inheritance relations.

4.3 Designer Feedback
We are also actively seeking feedback from visualization designers and
tool builders to inform the iterative design of Protovis. Initial feedback
has been quite positive; respondents have particularly praised the di-
rect and concise nature of Protovis specifications. For example, one
toolkit author wrote, “You’ve captured the basics in a concise and el-
egant manner,” while another designer noted that Protovis “gives us
a lot of flexibility with a shallow learning curve. Great things might
come from this.” Others surprised us by quickly responding with de-
mos they had built, including the first “mash-up” of Protovis with map-
ping libraries and a bar chart of live posting activity on Twitter; see
Figure 6(f,g). Mozilla Messaging is working to include Protovis with
Thunderbird 3, calling it “delightful” and “useful to add-on authors.”

Respondents also pointed out important areas for improvement.
Most feedback noted the need for higher-level support for scale trans-
forms and axis labeling; we subsequently added scale facilities for
computing ranges, setting mark properties, and generating tick and
label values. We have maintained an “opt-in” design philosophy for
such higher-level abstractions: we support various statistical and chart-
ing features in a way that complements our mark-based specifications,
ensuring that higher-level abstractions can be easily added, but also
easily removed or stubbed-out. Other requests included richer support
for interaction and animation, which we are now implementing.

5 DISCUSSION AND FUTURE WORK

The previous sections give some indication of the effort required to
construct “real-world” custom visualizations in our system, as well as
the system’s capabilities and performance. While it is true that other
systems are more concise, few simultaneously provide the same degree
of flexibility and control. And, because our system uses only simple
shapes with explicit visual encodings, its behavior is transparent: there
is not a lot of “magic” behind the scenes. We posit that the directness
of the specification makes the system more accessible to new users.

5.1 Evaluation
Of course, our hypotheses require further inquiry. While we have ap-
plied the Cognitive Dimensions of Notation framework in an initial
usability evaluation, both user studies and observed real-world usage
will further evaluate our claims. There are many questions to ask:
• Is the system easy to learn for new users? How quickly can novice

users learn to develop nontrivial, original works?
• Is the system accessible to non-programmers? Are the features

modeled after web page layout useful, or is the traditional mathemati-
cal graph approach more effective?
• Is the system suitable for complex visualizations? Are existing

features sufficiently expressive, or are new graphical primitives and
abstractions necessary?
•What impact does the system have on the creative process? Will

users produce better visualizations with a more expressive system, or
are errors, missing features and meaningless encodings more likely?

The last of these questions are perhaps the most important, since
they are relevant not just to producers of visualizations, but to con-
sumers. By taking a bottom-up approach, every visual element in Pro-
tovis is specified explicitly in contrast to top-down approaches where
visual elements are inherited from a template. As a result, our system
favors minimalist designs. This may discourage chartjunk and raise
the data-ink ratio [30], but at the same time it risks the omission of
helpful marks that are cumbersome to specify.

In the same vein, by requiring that the user specify the visualization
explicitly and by making all visual properties equally dynamic, it may
be more likely that an inappropriate visual encoding is used. Compare

this to a system such as Polaris or Mackinlay’s APT [22], which in-
telligently suggest meaningful designs based on metadata. The corol-
lary is that high-level visualization systems may inadvertently make
the wrong automatic decision, and not allow the user to compensate.
If we can encourage users to produce the right visualization by ex-
ample and with appropriate low-level building blocks, we may help
users construct effective visualizations without artificially restricting
the design space. Furthermore, automatic presentation tools may be
adapted to generate Protovis specifications, combining the benefits of
high-level tools with low-level design control.

Going forward, we plan to refine and extend the design of Proto-
vis. These plans include the design of a development environment to
assist visualization creation (a strategy that has proven effective for
tools such as Processing), potentially including a visual editor. We
also intend to conduct a formal evaluation of Protovis development.
We consider such work to be largely formative; we believe the true
measure of the toolkit’s value lies in the creation and dissemination
of successful visualization by others. We will accordingly continue to
monitor and respond to the needs and insights of Protovis users.

5.2 An Ecology of Visualization
One of the most exciting features of our system is that visualizations
become open source: since specifications are concise and are not com-
piled, but instead interpreted at runtime by the web browser, users
can easily view the source code and data behind any visualization. In
addition to learning by example, visualizations are constructed from
modular primitives which make it easier for designers to incorporate
discovered techniques into their own work through copy-and-paste [4].

Open source also facilitates some degree of collaboration [16],
since users can more easily create derivative works to show differ-
ent views or fix mistakes. For example, in our recreation of Burtin’s
antibiotic effectiveness chart (Figure 1) [27], we discovered a missing
grid line for the minimum inhibitory concentration of 0.01, as well as
an exaggeration of some values for Penicillin.

Systems such as sense.us [18] and Many Eyes [33] have helped
demonstrate the value of collaborative sharing of data, visualizations,
and insights gained from an analysis. The Google Visualization API,
meanwhile, lets developers package chart templates as “gadgets” for
reuse by others. However, one component of the visualization pipeline
that is not well addressed by these systems is the collaborative con-
struction of novel, interactive visualizations. Just as HTML enables
“everyday programmers” [28] to author web pages, by balancing ex-
pressiveness, efficiency, and accessibility, we hope that Protovis will
help foster a greater diversity of customized web-based visualizations.

ACKNOWLEDGMENTS

The authors thank Tom Carden and Michal Migurski of Stamen De-
sign, David Ascher and Andrew Sutherland of Mozilla, and Nelson
Minar, Hadley Wickham, and Daniel Gonçalvez for their feedback.

REFERENCES

[1] B. B. Bederson, J. Grosjean, and J. Meyer. Toolkit design for interactive
structured graphics. IEEE Trans. on Software Engineering, 30(8):535–
546, 2004.

[2] M. Bender, R. Klein, A. Disch, and A. Ebert. A functional framework
for web-based information visualization systems. IEEE Transactions on
Visualization and Computer Graphics, 6(1):8–23, 2000.

[3] J. Bertin. Semiology of graphics. University of Wisconsin Press, Madi-
son, WI, 1983.

[4] J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer. Opportunistic
programming: how rapid ideation and prototyping occur in practice. In
WEUSE ’08: Proc. 4th Workshop on End-User Software Engineering,
pages 1–5, New York, NY, 2008. ACM.

[5] L. Byron and M. Wattenberg. Stacked graphs – geometry & aesthetics.
IEEE Trans. Vis. and Comp. Graphics, 14(6):1245–1252, 2008.

[6] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings in
information visualization: using vision to think. Morgan Kaufmann, San
Francisco, CA, 1999.

[7] E. H. Chi and J. T. Riedl. An operator interaction framework for visual-
ization systems. In Proc. IEEE InfoVis, pages 63–70, 1998.

[8] CSS Box Model. http://w3.org/TR/CSS2/box.html, March
2009.

[9] S. G. Eick, M. A. Eick, J. Fugitt, B. Horst, M. Khailo, and R. A. Lanke-
nau. Thin client visualization. In VAST ’07: Proceedings of the 2007
IEEE Symposium on Visual Analytics Science and Technology, pages 51–
58, Washington, DC, USA, 2007. IEEE Computer Society.

[10] J.-D. Fekete. The InfoVis Toolkit. In Proc. IEEE InfoVis, pages 167–174,
2004.

[11] S. Few. Show Me the Numbers: Designing Tables and graphs to En-
lighten. Analytics Press, Berkeley, CA, 2004.

[12] Flare. http://flare.prefuse.org, March 2009.
[13] T. R. G. Green. Cognitive dimensions of notations. In Proceedings of

the fifth conference of the British Computer Society, Human-Computer
Interaction Specialist Group on People and computers V, pages 443–460,
New York, NY, USA, 1989. Cambridge University Press.

[14] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. ThemeRiver: Visualiz-
ing thematic changes in large document collections. IEEE Trans. Vis. and
Comp. Graphics, 8(1):9–20, 2002.

[15] J. Heer and M. Agrawala. Software design patterns for information visu-
alization. IEEE Trans. Vis. and Comp. Graphics, 12(5):853–860, 2006.

[16] J. Heer and M. Agrawala. Design considerations for collaborative visual
analytics. Information Visualization, 7(1):49–62, 2008.

[17] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive
information visualization. In Proc. ACM CHI, pages 421–430, 2005.

[18] J. Heer, F. B. Viégas, and M. Wattenberg. Voyager and voyeurs: Support-
ing asynchronous collaborative information visualization. In Proc. ACM
CHI, pages 1029–1038, 2007.

[19] P. Hudak. Building domain-specific embedded languages. ACM Comput-
ing Surveys, 28:196, December 1996.

[20] D. W. Johnson and T. J. Jankun-Kelly. A scalability study of web-native
information visualization. In GI ’08: Proceedings of graphics interface
2008, pages 163–168, Toronto, Ont., Canada, Canada, 2008. Canadian
Information Processing Society.

[21] JSON. http://json.org, March 2009.
[22] J. Mackinlay. Automating the design of graphical presentations of rela-

tional information. ACM Trans. Graph., 5(2):110–141, 1986.
[23] A. Maslow. The Pyschology of Science: A Reconnaissance. Harper &

Row, Madison, WI, 1966.
[24] P. J. Moran and C. Henze. Large field visualization with demand-driven

calculation. In VIS ’99: Proc. Visualization ’99, pages 27–33, 1999.
[25] D. A. Norman. The Psychology of Everyday Things. Basic Books, New

York, NY, 1988.
[26] Processing. http://processing.org, March 2009.
[27] R. R. Remington and R. Fripp. Design and Science: The Life and Work

of Will Burtin. Ashgate, 2007.
[28] M. B. Rosson, J. Ballin, and H. Nash. Everyday programming: Chal-

lenges and opportunities for informal web development. In VLHCC ’04:
Proceedings of the 2004 IEEE Symposium on Visual Languages - Human
Centric Computing, pages 123–130, Washington, DC, USA, 2004. IEEE
Computer Society.

[29] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis,
and visualization of multidimensional relational databases. IEEE Trans.
Vis. and Comp. Graphics, 8:52–65, 2002.

[30] E. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, CT, 1992.

[31] E. Tufte. Ask E.T.: Graphing Software. http://www.
edwardtufte.com/bboard/q-and-a-fetch-msg?msg_
id=00000p, April 2001.

[32] E. Tufte. Beautiful Evidence. Graphics Press, Cheshire, CT, 2006.
[33] F. B. Viégas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.

Many Eyes: a site for visualization at internet scale. IEEE Trans. Vis. and
Comp. Graphics, 13(6):1121–1128, 2007.

[34] C. Ware. Information visualization: perception for design. Morgan Kauf-
mann, San Francisco, CA, 2004.

[35] C. E. Weaver. Building highly-coordinated visualizations in Improvise.
In Proc. IEEE InfoVis, pages 159–166, 2004.

[36] H. Wickham. ggplot2. http://had.co.nz/ggplot2/.
[37] L. Wilkinson. The Grammar of Graphics (Statistics and Computing).

Springer-Verlag New York, Inc., Secaucus, NJ, 2005.
[38] J. Wood, K. Brodlie, J. Seo, D. Duke, and J. Walton. A web services

architecture for visualization. eScience, IEEE International Conference
on, 0:1–7, 2008.

http://w3.org/TR/CSS2/box.html
http://flare.prefuse.org
http://json.org
http://processing.org
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=00000p
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=00000p
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=00000p
http://had.co.nz/ggplot2/

	Introduction
	Related Work
	Graphical Systems
	Visualization Systems
	Consumer Software
	Analytical and Exploratory Tools
	Programming Toolkits

	Design
	Marks
	Properties
	Box Model

	Panels
	Built-in Mark Types
	Shapes
	Text and Images

	Data Transformation

	Evaluation
	Applications and Performance
	Pie Charts
	Job Voyager

	Cognitive Dimensions of Notation
	Designer Feedback

	Discussion and Future Work
	Evaluation
	An Ecology of Visualization

